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A B S T R A C T  

Let G be a p-group whose conjugacy classes have at most k sizes. We 
prove that G is abelian-by- (exponent pk-1) (ifp = 2, exponent 2k-2). It 
follows that a 2-group with three class sizes is metabelian. Various other 
results on class sizes are proved, and some conjectures are formulated. 

1. I n t r o d u c t i o n  

In this paper  we consider only finite p-groups.  Let G be such a group,  and let 

G have conjugacy class sizes n l  = 1 < n2 < " "  < rtk. Thus  the classes of size 

n,  consist of the central  elements. We refer to classes of size n2 as m i n i m a l  

c lasses ,  and to their elements as m i n i m a l  e l e m e n t s .  Recall tha t  if n8 = pb,, 

and x has ns conjugates,  we say tha t  x has b r e a d t h  b(x) = bs, and tha t  the 

b r e a d t h  of G is b(G) = bk. 

If  k = 2, i.e. all non-central  classes are of the same size, N. I to  [Ito] has shown 

tha t  G contains a normal  abelian subgroup A such tha t  G / A  has exponent  p. 

This was sharpened by I. M. Isaacs [Isa] to exp (G/Z(G) )  = p. Alternat ive 

proofs were given in [M1] and [V] (both  lisa] and [M1] derive their result un- 

der somewhat  weaker assumptions,  see Propos i t ion  11 below). Here we first 

generalise I to ' s  result to  

THEOREM 1: A p-group G with jus t  k conjugacy class sizes is an extension of  

an abelian group by a group of  exponent pk-1.  I f  p = 2 and k >_ 3, the exponent 

can be taken to be 2 k-2. 
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COROLLARY 2: A 2-group with just three conjugacy class sizes is metabelian. 

K. Ishikawa [Ish] has recently proved that  if k = 2, then the nilpotency class 

of G satisfies cl(G) _< 3. No such result is possible if k _> 3: for each order pn 

there exist groups of that  order of maximal class, i.e. of class n - 1, with an 

abelian maximal subgroup, and then the class sizes are 1, p, and p~-2. But it 

is natural to ask if there is a bound for the derived length of G. More precisely, 

we make the following 

CONJECTURE: There exist fnnctions f(s) and g(p) such that, with the above 

notations, the subgroup of G generated by the classes of sizes n l , . . . ,  ns has de- 

rived length at most f ( s ), and the subgroup generated by the minimal elements 

has class at most g(p). 

Indeed, in view of known results and conjectures about the analogous problem 

where the number of irreducible character degrees is given, one may surmise that  

f(s) would be about s, or even logs. For g(p) a likely value may be p. Our 

modest contribution towards a proof of the conjecture consists of Corollary 2 

and the following three results. 

THEOREM 3: A p-group G that is generated by its minimal classes satisfies 

cl(G) S 3. 

The proof, which is a minor modification of Ishikawa's argument, is indicated 

below. Moreover, a simplification of Ishikawa's argument was given by I. M. 

Isaacs, and his proof, which implies Theorem 3 immediately, is presented in 

[BI]. The argument in [BI] also shows that  if cl(G) = c >_ 4, then the minimal 

elements generate a subgroup of class less than c. 

Before stating the next results we recall that  G n denotes the subgroup of G 

generated by the nth  powers, {7~(G)} is the lower central series, and {Zi(G)} 

is the upper central series. The commutator subgroup 72 (G) is also denoted by 
G I" 

THEOREM 4: The subgroup generated by the minimal classes of a 2-group G is 

of class 2 at most. This subgroup centralizes G 2. 

THEOREM 5: The subgroup generated by the minimal classes of a metabelian 

p-group G is of class 3 at most. This subgroup centralizes 73 (G). 

Theorem 4, and the case p = 2 of Theorem 1, depend on the following 
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PROPOSITION 6: I f  G is a 2-group, the minimal elements x satisfying x 2 C Z(G) 

lie in Z2(G). 

Other proofs employ the following characteristic subgroup of p-groups: 

Definition: Let G be a p-group. The eentral iser  equal i ty  subg roup  D(G) 

of G is the subgroup generated by all elements of G satisfying ca(x) = Ca(x;). 

Obviously D(G) _> Z(G), and easy examples show that both equality and 

inequality of these two subgroups occur. The applicability of this subgroup in 

our context follows from the obvious fact that if x is a minimal element, then 

either x p E Z(G), or x is one of the generating elements of D(G). The next 

result shows, among other things, that D(G) always has a large eentraliser. For 

its statement, recall that a left n-Engel  e lement  is an element x such that 

[y, x , . . . ,  x] = 1 for all y E G, where x occurs in the commutator n times. 

THEOREM 7: Let G be a p-group. 

(a) D(G) is abelian. 

(b) f iB(G)  < H < G, and cl(H) < p, then D(G) < Z(H). 

(c) CG(D(G)) contains Zp(G), as well as all normal subgroups of G of class 

less than p, a11 elements of breadth less than p, and all left p-Engel ele- 

ments. 

(d) Let c < p. I f  N is maximal among the normal subgroups of G of class c, 

then D(G) _< N. 
(e) D(G) _ ZJ(G). 

Here we recall that J(G) is the T h o m p s o n  subg roup  of G, the subgroup 

generated by all abelian subgroups of maximal order, and ZJ(G) is its centre, 

which is equal to the intersection of all these abelian subgroups. Recall also 

that various subgroups with properties similar to those of J(G) were defined; 

we have in mind the two K-subgroups of Glauberman [BH, section X.8] and the 

Puig subgroup L(G) [BG, Appendix B]. It is not difficult to see that D(G) lies 

in the centre of all three of these subgroups. 

The proof of (e) depends on a slight extension of a result of J. D. Gillam [G]: 

PROPOSITION 8: Let G be a metabelian p-group, and let B be an abelian 

subgroup of G of maxima/order. Then G contains a normal abelian subgroup 

C < B ~ such that ICI = [B I. 

[G] does not have the claim that C < B a, but it is easy to see that it follows 

from the proof. However, we prefer to give an independent proof of the full 
proposition. 
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These results are proved in the next section, starting with Theorem 7, then 

deriving Theorems 1 to 5 in order, interspersing this with Propositions 6 and 8 

and other necessary intermediate results. In Section 3 we state and prove some 

further results. Most of these involve the quantitative invariant b(x). 

ACKNOWLEDGEMENT: I am very grateful to Gustavo Ferns and 

to the referee, for various suggestions regarding both the presentation of this 

paper and its proofs. Some of the results in Section 3 are due to the referee. I 

am also grateful to K. Ishikawa, Y. Barnea, A. Jaikin-Zapirain and I. M. Isaacs 

for communicating their results prior to publication. 

2. P r o o f s  

The following lemma is included for completeness. 

LEMMA 9: Let  G be a p-group of  class c ~_ p, and let x, y �9 G. 

commutes  wi th  y if  and only i f  x commutes  with yP. 

Then x p 

Proof: The claim of the lemma can be written as: [x p, y] = 1 iff Ix, yP] = 1. 

We will show that  both equalities are equivalent to [x, y]P = 1. Note that  

G' <_ Z c - I ( G ) ,  therefore c l ( (x ,G ' ) )  <_ c -  1 <_ p -  1, and in particular ( x , x  y) = 

(x, [x, y]) has class less than p, and is therefore a so-called r egu la r  p-group (see 

[Hu], III.10). In such groups a p = b p is equivalent to (a - lb )  p = 1, therefore 

[xP,y] = 1, which is the same as x p = ( y - l x y )P ,  is equivalent to Ix, y] p = 1, and 

by symmetry the last equality is equivalent also to Ix, yP] = 1. 

Proof  of  Theorem 7: (a) Write D = D(G), suppose that  this subgroup is not 

abelian, and let z E Z2(D) - Z(D), with z p E Z(D). Let x be one of the 

generating elements of D. Then cl({x, z}) _< 2, therefore [z, x p] = [z p, x] = 1, 

and thus z C CG(x p) = Ca(x) .  Letting x range over all generators of D, we 

obtain z C Z(D), a contradiction. 

Note: This proof was suggested by the proof of Proposition 3 in lisa]. 

(b) Let a be one of the generating elements of D(G), and x E H. We prove 

that  a commutes with x by induction on the order o(x) of x. By the induc- 

tion hypothesis a commutes with x p, and by Lemma 9 this is equivalent to x 

commuting with a p, i.e. x �9 C(a p) = C(a). 

(c) and (d) Since D is abelian, c l (DZp(G))  <_ p. Similarly, if N ~ G and 

c l (N)  <_ p -  1, then c l ( D N )  < p, by Fitting's Theorem. Thus the first two 

claims of (c) follow from (b). From this part of (c) it follows in turn that  
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c l (DN)  = cl(N),  so if N is maximal of its class, we see that  D N  = N,  i.e. 

D _< N. This proves (d). For the next claim of (c) note that  an element 

of breadth b is contained in a normal subgroup of class at most b, by [M3], 

Corollary 11 (an alternative proof is given in Proposition 17 below). Finally, if 

x is a left p-Engel element, and y �9 D(G),  then all commutators of weight p +  1 

in x and y either involve y at least twice, or x occurs p times. In either case 

the commutator  is the identity, because D(G) is abelian and x is p-Engel, so 

cl((x, y)) <_ p, and we can quote (b). 

We remark that  once we have proved the last claim of (c), we can use it to 

prove in a similar manner that  in (b) we can weaken the assumption on cl(H) 

to H being a p-Engel group (i.e. all elements of H are left p-Engel). 

P roof  of Proposition 8: Let B be an abelian subgroup of maximal order in 

the metabelian p-group G. We choose B so that  among the abelian subgroups 

of order ]B I in B a it has a maximal intersection with G ~, and we may assume 

that  it is not normal. Choose an element x �9 N o ( N a ( B ) )  - N a ( B ) .  Then 

B r B x, and B and B x normalise each other, so A = B B  ~ = B[B,x] is of 

class 2, and since both B and B x are maximal abelian subgroups, the equality 

Z(A) = B n B  ~ holds. We h a v e A  ~ B, therefore [B,x] ~ B. Now let E = 

Z(A) (BNG' ) [B ,x ]  <_ A; then E _< B c .  Since G' is abelian, so are (BNG')[B,x]  

and E. Moreover A = BE~ and B A E _> Z(A) = B N B ~, so [El _> [BI, and the 

maximality implies [El = [B[. But E n G' > B N G', a contradiction. 

Proof  of Theorem 7(e): Let B be an abelian subgroup of maximal order of G. 

Then K = D B  is a metabelian group, so, by Proposition 8, K contains a normal 

abelian subgroup C such that  ICI = ]B] and C _< B H. By part  (d) applied to 

K,  we have D < C, so that  K = D B  <_ C B  <_ B K, which implies K = B, i.e. 

D < B .  

Proof  of Proposition 6 (The present proof is due to the referee): Write Z = 

Z(G), let x be a minimal element satisfying x 2 C Z(G), and first assume that  

b := b(x) = 1 and let C = Ca(x) .  Then IG : C I = 2, and x has a u n i q u e  

conjugate, say y. Then x and y lie in Z(C), so they commute, and xy C Z. 

Therefore N := Z(x)  G = Z ( x , y )  = Z(x) ,  so that  IN:  Z I = 2 and N _< Z2(G). 

Next assume that  b > 1, and let H be a maximal subgroup containing C. 

Then x has breadth b - 1 in H,  and this is the minimal breadth in H.  Since G 

contains no elements of breadth 1, we have Z(H)  = Z. By induction x �9 Z2 (H). 

Choose h �9 H - C, and write z = [x, hi. Then 1 r z �9 Z. Therefore (x, h) is of 

class 2, so z 2 = Ix, h] 2 = [x 2, h] -- 1. Thus U = (z) is a central subgroup of order 
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2, and in G/U the coset xU is a minimal element of breadth b - 1. Moreover, 

the elements of G that  are central in G/U have at most two conjugates in G, 

and since b > 1, we get Z(G/U) = Z/U, and also Z2(G/U) = Z2(G)/U. But 

by induction xU E Z2(G/U), and so x E Z2(G). 

Proof of Theorem 1: The first part states that if G has k class sizes, then G is 

an extension of a normal abelian subgroup by a group of exponent pk-1. To see 

this, just note that  if x E G has order pe (modD(G)),  then x, xP,. . .  ,x p~ have 

strictly increasing centralisers, so e + 1 _< k, and thus G/D(G) has exponent at 
most pk- 1. 

Now assume that  p = 2. We first note that  then D(G) centralises all the 

minimal elements. Indeed, if x is minimal, then by Proposition 6, x lies either 

in D(G) or in Z2(G), so our claim follows from parts (a) and (c) of Theorem 7. 

It follows that  if we write N for the subgroup generated by all minimal elements, 

and K = D(G)N,  then D(G) _< Z(K).  

Now let z ~ K.  Then CG(z) ~ Ca(z2),  and if z 2 ~ K,  then also Ca (z  2) 7~ 

CG(z4), etc. Therefore either z 2k-2 E K,  or that  element is either central or 

z 2k-2 _< K. Moreover, for x a minimal minimal, so E K in any case, and G 2~-2 

element, if x 2 E Z(G), we have cl({x, z}) _< 2, so again [z 2, x] = [z, x 2] = 1, 

and G 2 centralises such elements x. But G 2k-~ centralises also D(G), since 

D(G) _< Z(K).  Thus G 2k-~ is contained in the abelian subgroup Z(K).  

Corollary 2 follows immediately from Theorem 1. 

Proof of Theorem 3: As mentioned, this is given in [BI]. Alternatively, one can 

follow the proof of the main theorem of [Ish], with the following modifications 

(using the notations of [Ish]). First, the element z has to be chosen so that  

zP E %- l (G) .  This ensures that [y, z]P E Z(G). The element y can be chosen 

to lie in any given set of generators of G, so we take it to be in a minimal class. 

Finally, the elements X l , . . . ,  xm generate, not %-I (G)Z(G) /Z(G) ,  but the socle 

of that  group. With these changes the proof carries through. 

Proof of Theorem 4: As pointed out in the introduction, an element of a min- 

imal class is either in D(G) or satisfies x p E Z(G). Thus Proposition 6 implies 

that  all minimal elements lie in the class 2 subgroup D(G)Z2 (G). Moreover, if x 

is as in Proposition 6, and y E G, then cl(x, y} _< 2, therefore [x, y2] = [x 2, y] = 1. 

If x is any minimal element, then some power x q of it satisfies C a ( x  q) = Ca(x)  

and (xq) 2 E Z(G), and thus all minimal elements centralize all squares. This 

proves Theorem 4. 

Theorem 5 also needs an auxiliary result. 
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PROPOSITION 10: Let G be a p-group, let N be the subgroup generated by all 

minimal elements, and write C = Cc([N,G]). Then [C,N] < Z(G) and [C,G] 

centralises N. 

Proof: Let x be a minimal element, let H = Ca(x)  and Z = Z(H),  and let 

y 6 NG(H) - H satisfy yP 6 H. Then 1 # [x,y] 6 Z, therefore [x,y] is either 

minimal or central, and in the first case Cc([x,  y]) = Ca(x) ,  and in particular 

C = CG([N,G]) < Ca([x,y]) = CG(x), so [C,x] = 1. We thus may assume 

that  Ix, y] is central, for each y as above. In that  case we employ induction on 

b = b(x). First, if b = 1, then IG : CG(x)I = p, and all elements outside CG(x) 

can be taken as y above. Since these elements generate G, the assumption 

that  [x,y] is always central means that  x 6 Z2(G), and [x,G] <_ Z(G). So let 

b > 1. Since Ix, y] is central, (x, y) has class 2, and as before we have [x, y]P = 1. 

Write K = ([x, y]). Then in G / K  the image of x is a minimal element, and has 

breadth b - 1. All minimal elements in G / K  are images of minimal elements 

in G, so if M / K  is the subgroup generated by the minimal elements of G/K,  

then M _< N so C / K  < CG/K([M/K,G/K]),  and by induction on b we have 

[C, x] _< Z(G mod K).  However, since b > 1, we have, similarly to the proof of 

Proposition 6, Z ( G m o d K )  = Z(G), ending the proof that  [C,x] <_ Z(G) for 

all minimal elements x. The last claim [G, C] _< C(N) follows from the three 

subgroups lemma. 

Proof of Theorem 5: In the notation of the last proposition, G' _< C, so that  

73(G) < [C,G], and the same proposition implies that  N centralizes 73(G). In 

particular, 7a(N) _< Z(N), so cl(N) <_ 3. 

3. F u r t h e r  r esu l t s  

As mentioned in the introduction, both [Isa] and [M1] prove that  exp(G/Z(G) = 

p under weaker assumptions than that  G has just two class sizes. In lisa] it is 

assumed that  there exists a normal subgroup N such that  all classes outside 

N have the same size, and in [M1] it is assumed, as in [Ito], that  of two dis- 

tinct proper centralisers, none contains the other (but they may have different 

indices). We now combine these two assumptions. 

PROPOSITION 11: Let the p-group G contain a normal subgroup N, such that 

if two elements outside N have different centralizers, then neither of these cen- 

tralizers contains the other. Then either GIN has exponent p, or G contains an 
abelian maximal subgroup (which contains N). 
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Proof: Suppose that  G / N  has an element, say x N ,  of order greater than p. 

Then both x and x p lie outside N, therefore they have the same centraliser. Thus 

all elements of G which do not have order p (mod N) lie in the abelian subgroup 

D := D(G). Moreover, if n C N, then xn also does not have order p (modN),  

s o x n  E D, imply ingn  C D, i.e. N < D. I f l G  : D I >_p2,1et D _< H _< G, 

with IH : D I = p2. Then H / N  is metabelian, has exponent greater than p, 

and all elements of H / N  of order not p lie in D / N .  But according to [HK], 

in a metabelian group of exponent greater than p, all elements of order not p 

generate a subgroup of index at most p. This is a contradiction. 

The next two results are due to the referee. We denote by N the normal 

closure of some element x E G, by C = Co(x)  its centraliser, and write b = b(x), 

and Z = Z(G). 

LEMMA 12: I f  X has order p, then IN[ _< FOb. I f  equality holds, then N is 

elementary abelian. 

Proof'. By induction on b. The case b = 0 is obvious. Let b > 0, let H be a 

maximal subgroup containing C, and let M = (x) H. By induction, IM] < ppb-1, 

and M has at most p conjugates in G, and these are all contained in H and 

normalise each other, so their product N has order at most F ~ Moreover, 

if equality holds, then N is a direct product of these conjugates, and M is 

elementary abelian by induction, hence so is N. 

LEMMA 13: I f  x p C Z, then IN : N A Z  I < FO~. 

Proof: By the previous lemma, IN : N fq Z I < IN : (xP)l <<_ FOb. Suppose 

that  equality holds; then again Lemma 12 implies that  N / ( x  p) is elementary 

abelian, with the pb conjugates of x as a basis. Moreover, x must have the same 

breadth b (and not smaller) also modulo (xP), which means that  x has the same 

centraliser in G and in G/(xP),  in particular N is abelian. Then the product of 

the conjugates of x is central, so these conjugates are not independent modulo 

Z, hence IN : N N Z I < FOb. 

PROPOSITION 14: Let G be a p-group, and let x E G have breadth b and order 

pe (modZ(G)).  T h e n x  C Zr(G), wherer  = l+e(pb--1),  and IN : N a Z I  < p epb. 

Proof: The case e = 1 of the inequality is Lemma 13, and this inequality 

implies the inclusion in Zr(G). If e > 1, write M = (xP)c; induction shows that  

IM : M fq Z I < p (e-1)pb, and Lemma 12 shows that  [N : M I < FOb, establishing 

the inequality. The inductive hypothesis yields also x p E Zl+(e_l)(pb_l)(G). 
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Letting G* := G/Z(e_l)(pb_l)(G), the previous case shows that  x* E Zpb(G*), 

so x E Zl+e(pb_l)(G). 

A variation on this is: 

PROPOSITION 15: An element of breadth b lies in Zpb (mod D(G)) .  

Proof: We keep the notations b and C as above. We certainly may assume that  

x ~ D(G),  so b(x p) < b - 1, and by induction x p E K := Zp~-l(GmodD(G)) .  

We can find a subgroup H such that  C < H < C a ( x  p) and ]H : C l = p. Then 

x E Z(C),~H and x p E Z(H) .  Let y E H - C ,  and write [x, y; n] = [x, y, y , . . . ,  y], 

where y occurs n times. Since x E Z(C) ,~ H,  we have [x, y; n] E Z(C). By the 

previous proposition, x E Zp(H),  implying [x,y;p] = 1. Thus [ x , y ; p -  1] E 

Z(H).  Induction on b implies that  [ x , y ; p -  1] E K.  That  means that  in 

G / K ,  the coset Ix, y; p -  2]K is centralized by H K / K ,  so Proposition 14 yields 

[x, y; p -  2] E Z2pb-1 (mod D(G)) .  Working now modulo the last subgroup in the 

same way, etc., we get [ x , y ; p -  i] E Zipb-l (modD(G)) .  The case i = p is our 

claim. 

We next verify a special case of a conjecture of Y. Barnea and I. M. Isaacs. 

Write n~ = p r  nk = ps. It is conjectured in [BI] that  cl(G) is bounded in terms 

of s - r. t We first recall some concepts from [M2]. A non-central element x E G 

is e x t r e m e ,  if for all elements Yl , . . .  ,Yt E G, either Ix, y1 , . . .  ,Yt] E Z(G) or 

CG([x, y l , . . . , y t ] )  = Ca(x) .  Elements of Z2(G) are trivially extreme; other 

extreme elements are termed p r o p e r l y  e x t r e m e .  We quote the following two 

results: 

R1. Minimal elements centralising G' are extreme ([M2], p. 46). 

R2. Let x , y  E G. If x is extreme, does not lie in Zi+I(G), and does not 

commute with y, then b(y) > ib(x) ([M2], statement P8). 

PROPOSITION 16: In a 2-group G, all minimal elements are extreme and lie in 

Zs_~+~(G). I l k  = 3, then cl(G) < s - r + 3. 

Proof: By Theorem 4, all minimal elements centralise G:,  so R1 implies that  all 

minimal elements are extreme. If Zi+2 (G) is the first term of the upper central 

series containing the minimal element x, R2 shows that  s > ir > i + r - 1, 

so x E Zs-T+e(G). If k = 3, then all elements outside Zs-~+2(G) have ps 

conjugates, so G/Z~_T+2(G) has exponent 2, by [Isa], implying cl(G) <_ s - r + 3 .  

t This conjecture has now been proved by A. Jaikin-Zapirain. 
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Next we give an alternative proof to a result of [M3] that  was quoted in the 

proof of Theorem 7(c) 

PROPOSITION 17: f i x  is not central, then cl(N) <_ b. 

Proof." If b = 1, then C is maximal in G, hence normal, and N _< Z(C) ,~ G, 

so N is abelian. For b > 1, let K be the core of C, i.e. the maximal normal 

subgroup contained in C. Then K = C a ( N ) ,  and Z(N)  = N Cl K.  Since 

C / K  contains no normal subgroup of G/K,  and CG/K(XK) >_ Z(G/K)  r 1, 

we see that  C / K  r Ca/K(XK),  and thus b(xK) < b. By induction: cl(N) = 
c l (N/N n K) + 1 = c I (NK/K)  + 1 <_ (b - 1) + 1, and we are done. 

Let us elaborate this argument. Define the b r e a d t h  s e q u e n c e  of x as follows: 

for x = 1 the sequence is empty. For x ~ 1, the sequence consists of b(x) followed 

by the breadth sequence of x K  in G/K.  For instance, if x is central then the 

sequence is {0}, and if b = 1 then the sequence is {1}. The above proof shows 

that  the sequence is strictly decreasing. The l e n g t h  of the sequence is the 

number of elements in it. 

COROLLARY 18: / f x  r 1, then cl(N) equals the length of the breadth sequence. 

This is seen by the proof of Proposition 17. 

We end this paper with a couple of results on a special class of 

p-groups that  was discussed by I. D. Macdonald [Mc]. If x has order pn, then 

pn - l ( p  _ 1) powers of x generate {x}. If two of these are conjugate, they are 

conjugate under Na({x}),  and the number of them in each conjugacy class is 

INa({x}) : ca((x))l, so the number of classes represented by these powers is 

pa(p_ 1), for some d. Since all these elements have the same breadth, it follows 

that  the number of non-identity classes of a given breadth is divisible by p -  1. In 

[LMM] groups having exactly p -  1 minimal classes were discussed, while in [Me] 

groups having exactly p - 1 classes of maximal size are investigated. The main 

results there are: Let G be a group of order pn having just p - 1 classes of size 

pb for b = b(G). Then cl(G) >_ 3, b(G) >_ 4, and n <_ b 2 + b. There exists such a 

group of order 2 7 , class 3, and breadth 4, direct powers of this group yield other 

examples, and the acknowledgement in [Mc] indicates that  there exist still other 

such 2-groups (the claim made in [M4], that  the 2-groups constructed in [VLW] 

yield more examples, is wrong). Still other examples, of arbitrarily high class, 

were constructed by G. A. Fern~ndez-Alcober and E. A. O'Brien. However, no 

example of odd order is known. 
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Here we indicate an alternative proof to the inequality b _> 4, by showing that  

b = 3 is possible only for p = 2. We also show that  b = 4 implies that  p _< 3. 

Thus the inequality for n shows that  there are only finitely many such groups 

of breadth 4, and it becomes of interest to improve that  inequality. In [LMM, 

p. 94] the improvement n <__ b 2 was remarked. We give the further improvement 

n <_ b 2 - 1. Even though this improvement is minute, the difference between 

the number of groups of order, say, 316 , to the number of groups of order 315 , 

is vast, so we feel justified in including this result here. 

PROPOSITION 19: Let  [G[ = pn, and let G contain exac t ly  p -  1 classes of  

e lements  o f  breadth b = b(G). I f  b = 3 then p = 2, and i f  b = 4 then p <_ 3. 

Moreover,  n < b 2 - 1. 

Proof." First let b = 3. There are p3(p _ 1) elements of breadth 3. Let N 

be a normal subgroup of order p2. Then either N is central and contains p2 

classes, or N contains p central elements and p - 1 classes of size p. There are 

pT~ _ p2 _ p3(p _ 1) elements outside N and not of breadth 3, and these have 

breadth at most 2, so we obtain that  the class number k(G)  of G is at least 
pn-2 _ 1 - - p ( p - -  1) + 2 p - -  1 + p - -  1 __pn-2 _ ( p _  3)(p--  1). 

If p is odd, then k(G)  >_ 3p ~-3, so [GMMPS, Theorem 1] shows that  one 

of the following holds: either ]G' I _< p2, or [G : Z(G)] _< p3, or G contains an 

abelian maximal subgroup M. In the first two cases b(G) < 2. In the third case, 

for any x ~ M, we have Z(G) = CM(x),  G' = [M,x] and pb(x) = ]M : Z(G)I = 

IGI]. Thus all elements outside M have the same breadth, contradicting our 

assumptions. 

The last statement of our proposition shows that  to eliminate the breadth 3 

case we have only to check 2-groups of orders up to 2 s. 

Now assume that  b = 4. A similar estimate, taking this time N of order p3, 

yields the lower bound k(G)  >_ p~-3  _ (p _ 4)(p - 1). If p > 5, this is more 

than 5p ~-4. For p = 5 the same inequality holds unless k(G)  = pn-3  _ r, where 

0 < r _< p -  1. Recall the result of P. Hall, that  k(G)  ==_ IGI mod((p 2 - 1 ) ( p -  1)) 

(see, e.g., [M1]), and note that  pn = pn-3  _ r mod((p2 _ 1 ) ( p -  1)) is impossible 

for these values of r and p _> 5. 

Thus k(G)  >_ 5p ~-4 if p > 5, so Theorem 2 of [GMMPS] shows that  one of 

four possibilities occur: either [G'[ _< p3, or [G : Z(G)[ _< pa, or there exists a 

normal subgroup N of order p such that  ] G / N  : Z ( G / N ) I  <_ p3, or G contains 

a maximal subgroup M with b(M)  _< 1. The first two possibilities imply b _< 3. 

In the third case b ( G / N )  < 2, implying again b < 3. Thus we have the last case. 
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Here if M is abelian, then as above we get the contradiction that  all elements 

outside M have the same breadth. Thus b(M) = 1, meaning that  [M'] = p 

[Kn]. Then G/M'  contains the maximal abelian subgroup M/M' ,  so again all 

elements outside M / M '  have the same breadth in G/Mq Since some of the 

elements of G outside M have breadth 4, and the others a smaller breadth, the 

elements of G/M ~ outside M / M '  all have breadth 3, and the same centraliser 

in M/M' ,  say C/M',  where [G : C[ = p 4 .  Let X be the set of elements of G 

of breadth 3. These lie outside M,  since the elements of M have breadth at 

most 2, and there are pn _ p,~-i _ p4(p _ 1) > pn-1 of them (note that  b = 4 

implies n _> 6). Thus X generates G. If x E X,  then CM(X) _< C, and because 

b(x) = 3, we have CM(X) = C. This implies C <_ Z(G),  so again b(G) < 3, the 

final contradiction. 

It  remains to prove the inequality for n. Let x have the maximal breadth b, 

and let 1 < i < p. The automorphism of (x) mapping x to x ~ does not have a 

p-power order, therefore x and x i are not conjugate in G. It  follows that  the 

p -  1 classes of breadth b are the classes of x, x2, . . .  ,x  p-l,  so all elements of 

breadth b are contained in the proper  subgroup (x) a, and in particular they 

are contained in each maximal  subgroup containing x. Connect C = Ca(x) 

to G by a maximal  chain of subgroups Hi, with C = Ho, for each i choose 

an element xi in Hi - Hi- l ,  and let Yb = Xb and Yi = ybxi for i < b. Write 

L = (Yl , . . .  ,Yb); then G = CL, and the generators of L lie outside the maximal 

subgroup Hb- l ,  therefore they have breadth less than b. Let D = C a ( L ) .  

Since [G : Ca(yi)l <_ pb-1, we have IG : D[ _< pb(b-1). All conjugates of x are 

conjugate to it by an element, of L, so if d E D we have (xd) L = xLd, a set 

of size pb. Thus xd has breadth b, and is one of the (p - 1)p b elements of this 

breadth,  so [D I <_ (p - 1)p b implying [D[ _< pb and [G[ _< p b~'. 

So far this was the argument  of [Me], as modified in [LMM]. Now assume 

that  the equality n = b '~ holds. Then the proof above shows that  ]D[ = pb. 

Let A be the set of elements of breadth b, and define a subgroup E by E = 

{w E G [ Aw = A}. Then AE = A, so A is a union of cosets of E,  and [E[ _< [A[, 

implying [E[ _< pb. On the other hand, we saw that  D _< E,  therefore D = E 

and E has order pb. Change the definition of L and D by changing xb to any 

other element of G - Hb-1. We still have D = E,  so D remains unchanged, and 

in particular it centralises all such elements xb, i.e. all elements outside Hb-1, 
which means that  D _< Z := Z(G). Since the reverse inclusion is obvious, we 

have D = Z. Let d E Z. We saw tha t  xd has breadth b, and so is conjugate to a 

power x i, where 1 < i < p -  1. But in G/Z  the cosets xZ  and x i z  are conjugate 
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only if i = 1. Thus all elements in x Z  are conjugate to x, which means that  

this coset is the conjugacy class of x. Then all commutators involving x lie in 

Z, so x �9 Z~(G). 

Next, write Li = (Yl , . . . ,Yi-I ,Yi+I  . . . .  ,Yb) and Di = CG(Li).  Again the 

equality n = b 2 implies that  ]G : Dil = P (b-1)2 and [Di : Z I = pb-1. For 

d �9 Di we have (xd) L~ = xL~d, a set of size pb-1. Assume also that  d ~ Z; then 

xd ~ xZ ,  so xd is not conjugate to x. If xd is conjugate to x i, 1 < i < p, then 

x �9 Z2(G) implies that  x i Z  = xdZ, and thus x �9 Di, a contradiction since x 

does not centralise any yj. Therefore xd is not of maximal breadth, and thus 

b(xd) = b - 1, and all conjugates of xd have the form xYd, y �9 Li. Taking any 

w �9 G we obtain [xd, w] = (xd) - l ( xd)  TM = (xd) - i xYd  = d- l[x ,y]d  = [x,y] �9 Z. 

Therefore xd �9 Z2(G) and d �9 Z2(G) and Di <__ Z2(G). 

But the subgroups D 1 , . . . , D b  generate their direct sum in G /Z ,  because, 

e.g., D1 A D 2 . . .  Db = Z, and this implies ]D1D2.. .  Db : Z] = pb(b-1), which in 

turn shows D1 "'" Db = G and thus G is of class 2, contradicting [Mc]. 
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